Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(4): 849-855, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204853

RESUMO

The mitochondrial permeability transition pore is a nonspecific transmembrane channel. Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling, calcium overload, and axonal degeneration. Cyclophilin D is an important component of the mitochondrial permeability transition pore. Whether cyclophilin D participates in mitochondrial impairment and axonal injury after intracerebral hemorrhage is not clear. In this study, we established mouse models of intracerebral hemorrhage in vivo by injection of autologous blood and oxyhemoglobin into the striatum in Thy1-YFP mice, in which pyramidal neurons and axons express yellow fluorescent protein. We also simulated intracerebral hemorrhage in vitro in PC12 cells using oxyhemoglobin. We found that axonal degeneration in the early stage of intracerebral hemorrhage depended on mitochondrial swelling induced by cyclophilin D activation and mitochondrial permeability transition pore opening. We further investigated the mechanism underlying the role of cyclophilin D in mouse models and PC12 cell models of intracerebral hemorrhage. We found that both cyclosporin A inhibition and short hairpin RNA interference of cyclophilin D reduced mitochondrial permeability transition pore opening and mitochondrial injury. In addition, inhibition of cyclophilin D and mitochondrial permeability transition pore opening protected corticospinal tract integrity and alleviated motor dysfunction caused by intracerebral hemorrhage. Our findings suggest that cyclophilin D is used as a key mediator of axonal degeneration after intracerebral hemorrhage; inhibition of cyclophilin D expression can protect mitochondrial structure and function and further alleviate corticospinal tract injury and motor dysfunction after intracerebral hemorrhage. Our findings provide a therapeutic target for preventing axonal degeneration of white matter injury and subsequent functional impairment in central nervous diseases.

2.
Front Neurol ; 13: 1046441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845225

RESUMO

Myxoma is the most common type of benign cardiac tumor in adults, and it has a strong tendency to embolize or metastasize to distant organs. Patients with multiple brain metastases have rarely been seen in clinics; hence, standard treatment protocols for multimyxoma metastasis in the brain have not been established. We present the case of a 47-year-old female who had convulsions in the right hand and repeated seizures. Computed tomography revealed multiple tumor sites in her brain. Craniotomy was conducted to remove the tumor sites. However, recurrent brain tumors and unexpected cerebral infarctions occurred frequently shortly after the treatment because the cardiac myxoma had not been treated due to the patient's personal concerns. The myxoma was resected by gamma knife radiosurgery, and temozolomide was given prior to cardiac surgery. There has been no evidence of tumor recurrence from the 2 years following the surgery until the present. This case highlights the importance of prioritizing cardiac lesions over cerebral lesions; if a cerebral metastasis has been found, it is likely that the cardiac myxoma is already unstable, with high rates of spread and metastasis. Therefore, it is unwise to treat metastasis sites before the cardiac myxoma. Additionally, the case suggests that gamma knife radiosurgery combined with temozolomide is effective as treatment for multiple myxoma metastasis in the brain. Compared with conventional cerebral surgery, gamma knife radiosurgery is safer, causes less bleeding, and requires a shorter time for recovery.

3.
Front Oncol ; 10: 574277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330047

RESUMO

Enhancing the therapeutic efficacy of anti-tumor drugs is essential for cancer management. Although cannabinoid receptor 2 (CB2R) stimulation exerts anti-tumor action in glioma cells by regulating cellular proliferation, differentiation, or apoptosis, selective CB2R agonist alone does not achieve a satisfactory therapeutic outcome. Herein, we aimed to evaluate the possible strategy for enhancing the anti-glioma efficacy of JWH133, a selective CB2R agonist. In this study, immunofluorescence and qRT-PCR were used to investigate microglia polarization. Tumor growth was monitored via bioluminescent imaging using the IVIS Spectrum System. The angiogenesis of human brain microvascular endothelial cells (HBMECs) was detected by the tube formation assay. qRT-PCR was used to investigate cytochrome P450 2J2 (CYP2J2) and 11,12-epoxyeicosatrienoic acid (11,12-EET) expression. Our results showed that administration of JWH133 significantly promoted microglial M2 polarization both in vitro and in vivo. The medium supernatant of M2 microglia induced by JWH133 treatment facilitated angiogenesis of HBMECs. CYP2J2 expression and 11,12-EET release in the supernatant of JWH133-induced M2 microglia were significantly upregulated. Treatment with 11,12-EET prompted HBMEC angiogenesis and glioma growth. CYP2J2 knockdown restrained the release of 11,12-EET and significantly enhanced the anti-tumor effect of JWH133 on glioma. This study showed that targeting CYP2J2 might be a beneficial strategy to enhance the anti-glioma efficacy of JWH133 by inhibiting the pro-angiogenesis function of M2 microglia.

4.
Transl Stroke Res ; 11(3): 503-516, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31696415

RESUMO

Iron-mediated toxicity is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study was performed to investigate the noninvasive neuroimaging method for quantifying brain iron content using a minipig ICH model and assess the effects of minocycline treatment on ICH-induced iron overload and brain injury. The minipig ICH model was established by injecting 2 ml of autologous blood into the right basal ganglia, which were then subjected to the treatments of minocycline and vehicle. Furthermore, the quantitative susceptibility mapping (QSM) was used to quantify iron content, and diffusion tensor imaging (DTI) was performed to evaluate white matter tract. Additionally, we also performed immunohistochemistry, Western blot, iron assay, Perl's staining, brain water content, and neurological score to evaluate the iron overload and brain injury. Interestingly, we found that the ICH-induced iron overload could be accurately quantified by the QSM. Moreover, the minocycline was quite beneficial for protecting brain injury by reducing the lesion volume and brain edema, preventing brain iron accumulation, downsizing ventricle enlargement, and alleviating white matter injury and neurological deficits. In summary, we suggest that the QSM be an accurate and noninvasive method for quantifying brain iron level, and the minocycline may be a promising therapeutic agent for patients with ICH.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/patologia , Quelantes/administração & dosagem , Ferro/toxicidade , Imageamento por Ressonância Magnética , Minociclina/administração & dosagem , Animais , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Masculino , Suínos , Porco Miniatura
5.
Front Cell Neurosci ; 13: 429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607868

RESUMO

Ischemic stroke is one of the most leading diseases causing death/long-term disability worldwide. Activating endogenous neural stem/progenitors cells (NSPCs), lining in the subventricular zone (SVZ) and dentate gyrus, facilitates injured brain tissue recovery in both short and long-term experimental settings. While, only a few proliferated NSPCs migrate toward the lesions to enhance endogenous repair after ischemia. Here, the results indicated that the functional recovery was evidently improved and the infarct volume was significantly reduced with ascorbic acid (AA) treatment in a dose-dependent manner from 125 to 500 mg/Kg, and the suitable therapeutic concentration was 250 mg/Kg. The possible mechanism might be due to activating sodium-vitamin C cotransporter 2 (SVCT2), which was down-regulated in SVZ after ischemia. Furthermore, immunostaining images depicted the number of migrated NSPCs from SVZ were significantly increased with 250 mg/Kg AA treatment or SVCT2 overexpression under the physiological and pathological condition in vivo. Besides, the data also represented that 250 mg/Kg AA or SVCT2 overexpression facilitated NSPCs migration via promoting F-actin assembling in the manner of up-regulating CDC42 expression using oxygen-glucose deprivation in vitro. Collectively, the present study indicates that SVCT2 promotes NSPCs migration through CDC42 activation to facilitate F-actin assembling, which enlarges the therapeutic scope of AA and the role of SVCT2 in NSPCs migration after brain injury.

6.
Sci Rep ; 8(1): 12647, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140021

RESUMO

Mesolimbic dopamine (DA) system lesion plays a key role in the pathophysiology of depression, and our previous study demonstrated that reduced microtubule (MT) stability aggravated nigrostriatal pathway impairment after intracerebral hemorrhage (ICH). This study aimed to further investigate the occurrence regularity of depression-like behavior after ICH and determine whether maintaining MT stabilization could protect DA neurons in ventral tegmental area (VTA) and alleviate depression-like behavior after ICH. An intrastriatal injection of 20 µl of autologous blood or MT depolymerization reagent nocodazole (Noco) was used to mimic the pathology of ICH model in mice. The concentration of DA, number of DA neurons and acetylated α-tubulin (a marker for stable MT) in VTA were checked, and depression-related behavior tests were performed after ICH. A MT-stabilizing agent, epothilone B (EpoB), was administered to explore the effects of MT stabilization on DA neurons and depression-like behavior after ICH. The results showed that obvious depression-like behavior occurred at 7, 14, and 28 days (P < 0.01) after ICH. These time-points were related to significant decreases in the concentration of DA (P < 0.01) and number of DA neurons (P < 0.01) in VTA. Moreover, The decrease of acetylated α-tubulin expression after ICH and Noco injection contributed to DA neurons' impairment in VTA, and Noco injecton also aggravate ICH-induced depression-like behaviors and DA neurons' injury. Furthermore, EpoB treatment significantly ameliorated ICH and Noco-induced depression-like behaviors (P < 0.05) and increased the concentration of DA (P < 0.05) and number of DA neurons (P < 0.05) in VTA by increasing the level of acetylated α-tubulin. The results indicate that EpoB can protect DA neurons by enhancing MT stability, and alleviate post-ICH depressive behaviors. This MT-targeted therapeutic strategy shows promise as a bench-to-bedside translational method for treating depression after ICH.


Assuntos
Depressão/metabolismo , Neurônios Dopaminérgicos/metabolismo , Epotilonas/uso terapêutico , Microtúbulos/metabolismo , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Depressão/tratamento farmacológico , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...